0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
float quartic_evaluate( float t, float c, float p, float h, float k )
{
   float a4 = 1.0-k*k;
   float a3 = -2.0*p*(1.0-k*k);
   float a2 = h*h + (1.0-k*k) * p*p - k*k*(c-h)*(c-h);
   float a1 = 2.0*k*k*(c-h)*(c-h)*p;
   float a0 = -k*k*(c-h)*(c-h)*p*p;
   return a4*t*t*t*t + a3*t*t*t + a2*t*t + a1*t + a0;
}

// Per vertex transformation to account for true refraction underwater
vec3 refraction_solve( vec3 world_co, vec3 camera_co, float water_height )
{
   if( world_co.y > water_height )
      return world_co;

   float c = camera_co.y - world_co.y;
   float p = length( world_co.xz - camera_co.xz );
   float h = water_height - world_co.y;
   float k = 1.3333/1.0005;

   float ta = ((c-h)/c) * p;
   float tb = p;

   float Fa = quartic_evaluate( ta, c,p,h,k );
   float Fb = quartic_evaluate( tb, c,p,h,k );

   float tc = 0.0;

   for( int i=0; i<10; i ++ )
   {
      tc = (0.5*Fb*ta - Fa*tb) / (0.5*Fb - Fa);
      float Fc = quartic_evaluate( tc, c,p,h,k );

      if( Fc < 0.0 )
      {
         Fa = Fc;
         ta = tc;
      }
      else
      {
         Fb = Fc;
         tb = tc;
      }
   }

   float j = c - (p / (tc / (c-h)));
   return world_co + vec3(0,j,0);
}